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Abstract-A least square method is used to determine the heat flux from a solidifying metal (steel) into a 
water-cooled steel belt. For this purpose, four temperatures measured in the metal are compared to those 
calculated using a mathematical model to solve the equation of heat conduction. The boundary conditions 
used in this model are given by the uppermost measured temperature and by an analytical expression for 
the heat-transfer coefficient from the bottom side of the metal to the cooling water. This expression involves 
three parameters which are determined in such a way that the square of the difference between the measured 
and calculated temperatures is reduced to a minimum. Minimization is achieved by using a steepest descent 
algorithm. A sketch of the set-up used for the experiments and two examples of temperature measurements 

and corresponding evaluated heat fluxes are given. 

INTRODUCTION 

A KNOWLEDGE of the heat flux from the solidifying 
metal into the mould is of interest in all kinds of 
casting processes. It is important for both the layout 
of the casting machines and for the optimization of 
product quality and therefore has been investigated 
by several authors [I-S]. 

The heat flux at the metal-mould interface is usually 
determined by measuring temperatures within the 
mould and/or in the solidifying metal. These data are 
then used to solve the so-called inverse heat con- 
duction problem. Under conditions close to the steady 
state this is often easily achieved by taking two tem- 
peratures measured in the mould and the thermal 
conductivity of the mould material. For transient 
heat-flux conditions the most popular method is to 
solve the equation of heat conduction and to fit the 
calculated temperatures to those measured by trial 
and error variation of the heat-flux density. An alter- 
native method is to replace the unknown boundary 
condition by a condition derived from the measured 
temperatures when the heat conduction equation is 
solved using a method of finite differences [6]. By using 
such an approach in combination with experimental 
data, achieved with the set-up described befow, a 
strong oscillation of the calculated heat flux was 
found. A thorough examination of such effects occur- 
ring during solution of inverse heat conduction prob- 
lems can be found in the work of Beck [5]. Such 
problems can be overcome by using least square 
methods 12, 3, 5, 7]. Beck [S] used an expression for 
the heat-flux density constant or linear in consecutive 
time intervals. The heat-flux densities are determined 
one by one for each time interval by an iterative cor- 
rection procedure which is derived from the condition 
that an appropriate sum of square differences between 

measured and calculated temperatures becomes mini- 
mal. Beck’s method was also used by Ho and Pehlke 
[2, 31. An alternative least square technique only applic- 
able to linear problems to determine the whole heat- 
flux profile at one time, which has the form of a 
polynomial, is described by Frank [7]. A survey of 
expe~mental and theoretical work on metaI-mould 
heat transfer and also on methods to solve the inverse 
heat conduction problem is given by Ho and Pehlke 

[31. 
With the least square method used in this paper the 

whole heat-flux profile, the form of which is adapted 
to the specific problem, is determined at one time. 
minimization of the square sum is achieved by a steep- 
est descent algorithm [S]. 

The method is applied to experimental data 
achieved with a set-up simulating solidification in 
belt casting processes. Such processes are for instance 
of great interest in the field of near net shape casting of 
steel [9, IO]. Heat-transfer conditions for such a type 
of caster were investigated by Sugitani et al. [l I] by 
measuring the temperatures in the solidifying steel. 
Two constant heat-transfer coefficients in two suc- 
cessive time intervals were determined by trial and 
error to give the best agreement between the measured 
and calculated temperatures. The experimental tech- 
nique described in the present paper is similar to that 
used by Sugitani et al. 

ANALYSIS OF THE EXPERIMENTAL DATA 

The following algorithm was used to determine the 
heat-flux density from a solidifying metal layer (steel) 
into the water-cooled belt based on temperatures 
measured in the metal layer. 

The temperature profile in both the solid and liquid 
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NOMENCLATURE 

.Y spatial coordinate 
X I....,X‘l position of the four 

thermocouples 
m number of temperature measurements 

used for the least square method 
n number of measuring positions 
t time 
T temperature 

T, casting temperature 

r, liquidus temperature 

7.W cooling water temperature 
T me temperature measured at the 

thermocouple position 
h specific enthafpy (as a function of 

temperature) 

h, specific enthalpy at the previous time 
level in the numerical sofution 
procedure 

a, h, c parameters in the formula for (r 

%pr ? h apl, cop, parameters yielding optimal fit 
between measured and calculated 
temperatures 

J,, y2, y3 correction factors for a, b and c 
i integer index 

.rr.ncw improved vatues of yi 
f sum of square of differences between 

measured temperatures and those 
calculated using the parameters a, h and c 

F F(g,,,Y2, ,ri) = f‘(u*.Y,, h.JZ. C.,r,) 
VF approximate gradient of F 
(VF), ith component of VF 

AL’ increment used in the calculation of VF 
.P step width in the steepest descent 

algorithm 
P R:(s) = F((J,. _Y,, Jzf-s*VF) 
[l-d, 1 +d] x [l -d, I +d] x [I-d, It-d] 

domain in which the minimum of 
F is searched, 
{().,,1:2,.~i)/l-dd1., G l+d. 
i= 1,2,3j 

A,, . A,, B,: . , B, coefficients in the 
finite difference equations. 

Greek symbols 
a heat-transfer coefficient 
i thermal conductivity (as a function of 

temperature) 

P density (as a function of temperature). 

parts of the metal layer is given by the equation for 
heat conduction 

(1) 

if a unidirectional heat flux is assumed. 
The origin of the coordinate system (X = 0) lies at 

the interface between the belt and the metal. The direc- 
tion of the x-coordinate is perpendicular to the belt 
surface. 

Let Y,, . . , .u, be the coordinates (distances from 
the belt) of the thermocouples. Equation (1) is then 
solved in the interval [0, x,,] using the following initial 
and boundary conditions : 

T(x, t = 0) = T, (2) 

7-(x = .xnr t) = T”,c(X,lr r) (3) 

,$= 0.l) = a(t.u,h,c)(T(x = O,t)-T,). (4) 

For the heat-transfer coefficient M an expression of the 
form 

is used. 

cY(t,a,b,c) = ath+c (5) 

If for a pure metal T,,,,(.x,,, t) is equal to TI, and 
both T(x = 0, t) and the material properties are con- 
stant, an analytical solution (Neumann’s solution) to 
equation (1) can be found. The heat-transfer 
coefficient calculated from this analytical solution for 

a constant surrounding temperature is in the form of 
equation (5) with b = -0.5 and L’ = 0. Parameter a is 
a function of material data and T(x = 0, 1). 

Equations (l)-(5) are solved numerically using 
finite differences and a fully implicit enthalpy method 
[ l2]. The specific algorithm used was found to meet 
the requirements of accuracy and efficiency in the 
computing time and is outlined in the Appendix. To 
improve the accuracy for the first period of time the 
grid is significantly refined at the lower boundary 
(X = 0). For each set of parameters a, h, C, a tem- 
perature profile is obtained which is compared to the 
measured data calculating the square of the differences 

(t,, I -tJ 3 0. (6) 

As the temperatures at the highest measuring position 
(_Y = x,,) are taken as the boundary condition (equa- 
tion (3)) these data are not applied for the calculation 
of .f: 

To avoid complications arising due to the par- 
ameters having different orders of magnitude, their 
optimum values are determined using an iterative 
steepest descent algorithm which minimizes the func- 
tion 

F(_ri,f’z>~?) =.f(~.!:,.h.)‘2,~,1.3)- i7j 
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For a, b and c, values are chosen which are expected 
to be close to the optimum ones (e.g. a = 1000 W m- 2 
K-’ sh, c = 500 W me2 K- ’ and b = - 0.2 for the 

considered problem). 
As an analytical expression for F cannot be given, 

an approximate gradient is calculated starting at 
Y, = yz = J-‘x = 1 

VF= 

F( . . . . Yi+AY,. ..)-F( . . . . Y!--AY ,..,) 

i 
)... . 

ith component (8) 

AY is an increment, e.g. AY = 24100 with d defining 
the interval in which the minimum of F is expected 
(e.g. d = 0.5) 

~t.m E II -4 1 +si. 

By looking for this minimum in the direction of steep- 
est descent and by assuming that F is also zero there 
(which would mean perfect agreement between 
measurements and calculations), the following equa- 
tion must be solved : 

F(s) = F((J*,,J’~,~~)-sVF) = 0. (9) 

A first-order Taylor expansion of Fat s = 0 yields 

F(Y,,Y,,Y~) 

’ * (VF)’ ’ 

The new point is then calculated according to 

1 

l+d if Y,-s*(VF), > l+d 

Yi.ncw = l-d if Y,-s*(VF), < l-d (11) 

Y, ---se (VF), otherwise. 

If 

F((Y,,Yz,YL) < F(Y,,Yz,Y~) (12) 

the procedure continues with equation (8) by cal- 
culating a new gradient at (y,, yr, Y3)new, otherwise s 
is multiplied by 0.5 and yi,new is calculated again using 
this modified value of s and equation (11). 

The iteration is continued until F has become 
sufficiently small or until no further improvement can 
be achieved (for the used values of a, h, c and d). If 
(Y,, Y2. yl) finally lies on the boundary of [I-d, 
1 id] x fl -d, I +d] x [l-d, 1 +d] the iteration has 
to be restarted with modified values for a, b, c and d. 

The optimum parameters for the calculation of CI 
according to equation (5) are finally given by 

c opt = C‘I’3. (13) 

The described method was tested by calculating the 
temperatures at four different positions using Neu- 
mann’s solution and adopting them as ‘measured’ data. 
A comparison of the heat-transfer coefficient, deter- 

mined using the method described, with that achieved 
from the analytical solution for the temperature pro- 
file gave an almost perfect agreement. Of course, 
as already mentioned, in this case the anatytical ex- 
pression for Q has exactly the same form as equation 

(5). 

EXPERIMENTAL SET-UP 

The experimental set-up is sketched in Fig. 1. The 
liquid steel is poured into a cylinder standing on the 
belt (steel, 1.5 mm thick). The belt is water-cooled 
from below. 

The cylinder consists of an outer metal cylinder and 
an inner one of refractory material (‘insert’ in Fig. I). 
In between there is an insulation layer. The inner 
cylinder is preheated before the experiment to prevent 
heat losses to the sides and, therefore, to ensure the 
mainly axial heat flux assumed in the mathematical 
model. 

The temperature in the steel is measured by four 
thermocouples which are positioned a few milhmetres 
away from the belt on the centreline of the cylinder. 
The thermocouples are inserted into protection tubes 
(Al,O,, 1 mm in diameter). 

As the protection tubes sometimes break and lift up 
somewhat, the small ingots are cut in the longitudinal 
direction after completion of the experiment to deter- 
mine the actual position of the thermocouples. The 
symbols in Fig. 2 show for two examples the tem- 
peratures measured at the four positions as a function 
of time. The distance between the thermocouple and 
the belt is also given for each curve. In the example 
given in Fig. 2(a) the thermocouples were practically 
in their original position, whereas Fig. 2(b) shows a 
significant shift. For the heat-flux analysis described, a 
shift in the thermocouple position causes no problem 
provided that the final position is known. 

As the thermocouples must be heated up from room 
temperature, when they come into contact with the 
steel it takes about 2 s before stable data are achieved. 
The temperature at t = 0 is that measured in the melt, 

FIG. I. Sketch of the experimental set-up. 
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FIG. 2. Two examples for temperatures measured in the 
solidifying steel (symbols). The lines represent temperatures 
calculated with the ‘optimal’ parameters in the formula for 

the heat-transfer coefficient. 

RESULTS 

An analysis of the measured data, given by the 
symbols in Fig. 2 leads to the results shown in Fig. 3. 

The calculated bottom temperature (x = 0) of the 
steel layer, the heat-flux into the belt and the heat- 
transfer coefficient, which is calculated from the opti- 
mum parameters, are plotted as a function of time. 
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0 20 40 60 
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FIG. 3. Calculated bottom temperatures, heat-flux densities 
and heat-transfer coefficients for the two examples in Fig. 2. 

The heat flux is achieved directly from the bottom 
temperature and the heat-transfer coefficient, which 
is for a cooling water temperature T, = 30 C. The 

optimum parameters inserted into the formula for ix 
are also given in Fig. 3(c). Both the heat-flux density 
into the belt and the heat-transfer coefficient decrease 
strongly at the first moment indicating that the devel- 

oping contact resistance between the forming solid 
layer and the belt is of great importance. In a series 
of experiments in which the belt was made of stainless 
steel in place of the non-alloyed steel used in the pre- 
sented examples, the relatively low thermal con- 

ductivity sometimes leads to a sticking of the small 
ingot at the belt. Under such irregular conditions the 
good contact results in a significantly increased heat- 
transfer coefficient confirming the importance of the 
contact resistance. 

The temperatures calculated at the measuring pos- 

itions in the steel layer using the optimal a-profile 
are presented by the lines in Fig. 2 showing good 

agreement. 
The heat-transfer coefficients are of similar mag- 

nitude to those reported by Sugitani et al. [I I]. They 
found good agreement between measurements and 
calculations, choosing a ~3000 W me2 Km ’ for the 
initial 2 s and afterwards a z 1200 W m- ’ K ‘. The 

heat flux into the belt is also quite similar both in 

magnitude and profile to that measured for the broad 
sides of mouids for continuous casting of steel slabs 

[ 131 if the distance from the meniscus is converted into 
a corresponding time by dividing by the casting speed. 

A relatively large scattering was found in the results 

for different experiments. This may be due to an 
insufficient control during the experiments of the flow 
field in the steel after manual pouring and also of 
other parameters such as reoxidation. Different types 

of structures for the bottom surfaces of the small 
ingots were found to develop and their roughness has 
a significant effect on heat transfer. 

The computing time required to run the written 

program in order to achieve the presented examples 
is in the range of about 10 min using a modern super 

mini computer. 

CONCLUSIONS 

A technique was tested to determine heat-flux den- 

sities from temperatures measured in a solidifying 
metal layer. This technique is based on a least square 
fit between the measured and calculated data and 
was found to be accurate on data derived using an 
analytical solution and also insensitive to certain fluc- 
tuations of measured data or to a lack of data during 
the first seconds. No stability problems found when 
testing other methods or reported by other authors 
arose. The advantage of the technique presented over 
a pure trial and error approach in fitting measured 
and calculated data is obvious. Of course, the results 
obtained depend to a certain extent on the expression 
chosen for the heat-transfer coeflicient. There are, 
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however, no principal restrictions, such as continuity 
or number of parameters involved, on the form of this 
expression. 

Application of the technique described to the sol- 
idification of steel on a water-cooled belt leads to 
heat-flux density profiles similar to those measured in 
moulds during the continuous casting of steel slabs 
indicating that in both processes the mechanisms con- 
trolling the heat transfer are similar. 
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For~hungsgemeinsehaft’. 
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APPENDIX 

Using finite differences and an implicit scheme, dis- 
cretization of equation (1) gives a system of equations each 
having the form 

A,(i)T(i-1)-t-A,(i)T(i)+A,(i)T(i+l)+A,(i)h(i) = h,(i) 

(Al) 

where i is the current number of an internal grid point. h,(i) 
is the known specific enthalpy at grid point i for the previous 
time level. 

To obtain an equation for the variable h only, equation 
(Al) can be rewritten to give 

B,(i)h(i- 1) +&(i)h(i) +B,(i)h(i+ 1) = h,(i) (A2) 

with 

B,(j) = A,(j) Tci-_t! 
h(l- I) 

T(i) 
W) = A&h(i) +A& 

B3(i) s A,(i)-)) 
h(i+ 1) ’ 

The system of equations (AZ), which is completed by two 
equations for the grid points on the boundary derived from 
the boundary conditions, is solved by iteration in the fol- 
lowing way. For the first iteration cycle the temperature from 
the previous time level is taken to calculate the material data 
(A. p) entering A ], . , A,. The ratio T/h at the grid points 
is also taken from the previous time level. This enables B,, 
B, and 8, to be calculated and the linearized system (A2) to 
be solved, yielding new enthalpies h at the grid points. Using 
the known h-7” relationship new temperatures, material data, 
values for the T/h ratio and, therefore, new values for B,, Bz, 
B, are achieved. This procedure is repeated until a prescribed 
stability for h and T is reached. 

ETUDE PAR UNE METHODE DE MOINDRE CARRE DU TRANSFERT THERMIQUE 
ENTRE UN METAL ET L’EAU DE REFROIDISSEMENT 

R&u&-Une mithode de moindre carre est utilisee pour determiner le flux thermique partant d’un metal 
en solidification (acier) dans une bande refroidie par eau. Pour cela quatre temptratures mesurees dans le 
metal sent cornpar& a celles calculees a partir d’un modele ma~~matique pour resoudre l’equation de la 
conduction thermique. Les conditions aux limites utilisees dans ce modele sont don&es par la temperature 
mesur&e la plus ilevie et par une expression analytique pour le metal et l’eau de refroidissement. Cette 
expression contient trois parametres qui sont determines de facon a reduire a l’extreme le carre de la 
difference entre la temperature mesurte et celle calculee. La minimisation est obtenue en utilisant un 
algorithme de plus grande pente. Un schema du montage utilist par les experiences est don& ainsi clue 

deux exemples de mesure de tempirature et d’evaluation correspondante de flux thermique. 
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UNTERSUCHUNG DES WARMEUBERGANGS ZWISCHEN METALL UND EINEM 
WASSERGEKtiHLTEN BAND DURCH FEHLERQUADRATM~NIMIERUNG 

Zusammenfassung-Ein Minimierungsverfahren wird benutzt, urn den Wdrmestrom zwischen einer erstar- 
renden Stahlschicht und einem wassergekiihlten Stahlhand zu untersuchen. Hierzu werden vier im Stahl 
gemessene Temperaturen mit numerisch berechneten verglichen. Als Randbedingungen werden dabei 
die gemessene Temperatur am obersten Thermoelement sowie ein W~rme~~rgangskoeffizient van der 
Unterseite der Stahischicht zum Kiihlwasser benutzt. In die Formel fur diesen gehen drei Parameter 
ein. die so bestimmt werden, dalj die quadratische Abweichung zwischen berechneten und gemessenen 
Temperaturen minimal wird. Fur die Minimierung wird ein Gradientenverfahren angewandt. Der benutzte 
experimentelle Aufbau wird skizziert. und es werden Beispiele fur durchgefiihrte Auswertungen angegeben. 

HCCJIEjJOBAHME TEITJIOTIEPEHOCA MEIKAY METAJIJIOM M BOfiOOXJIAnJJAEMbIM 
HO5iCOM C ~C~O~b~BA~~EM METOAA HA~MEHb~~ KBAAPATOB 

ihIOTaUUH--MeToJloM HUiMeHbIJlHX IcsanpaToB 06pa6aTbIBaiOTCSl pe3ynbTaTbl l-IO TelInOIIePeHOCy OT 

3aTBepneeaiomero MeTanna (~T~JIH) K BonooxnamnaeMoMy cTanbeok4y noncy. C 3~0fi uenbfo YeTbqe 

3fiaqeHwd H3MepeHHarx B hferanne TehinepaTypbr cpalsHsieawTcn c paccrIwTaiiHbIMa iia 0cnoBe MaTeMa- 

TU’ieCKOfi MOReJIH N3 pt%U@iEiS YpaBHeHEJf TellJlOitpOBO3.WOCTEi. i&WiVlibie yCJIOBWS, iiCIK?Jlb3yeMMe B 

AaHHoii Mo~en~,3a~~c~BawTc~~a OcfiOBaHHBW MaKCHM~b~O~ m3Me~Hno~Te~e~Typ~ IIBHanHTH- 

vec~oro BbxpameHan arm Ko+$siiuieziTa TeIL!IoO(iMeHa OT HrmcHeii SacT5i MeTanna K oxnamsawuieeil 

Bone. IlonyreHHoe swpaxeeee BKnmSaeT rpu napaMeTpa, onpenennehfble MuasiMsisarurek KsanpaTa 

pa3~on~ Memay 83~epe~~oii A paccqsTawioii TehinepaTypahtH. hhisihfsi3awix ,nocrIiraeTcn npe 

II~MOIIW anrop3fTMa 6bzcrpeihuefo CEY~K~. IIpB0itKTcK cxeMa 3xcnepEihfeHTanbHoii ycTaaosua, a 

TaK~enea6paMepasshffepeHuii?eMnepaTypbx~~00~Be~~~~IUR~pace~waHHblxTe~oBMxn0~0~0~. 


