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Abstract—A least square method is used to determine the heat flux from a solidifying metal (steel) into a
water-cooled steel belt. For this purpose, four temperatures measured in the metal are compared to those
calculated using a mathematical model to solve the equation of heat conduction. The boundary conditions
used in this model are given by the uppermost measured temperature and by an analytical expression for
the heat-transfer coefficient from the bottom side of the metal to the cooling water. This expression involves
three parameters which are determined in such a way that the square of the difference between the measured
and calculated temperatures is reduced to a minimum. Minimization is achieved by using a steepest descent
algorithm. A sketch of the set-up used for the experiments and two examples of temperature measurements
and corresponding evaluated heat fluxes are given.

INTRODUCTION

A kNOWLEDGE of the heat flux from the solidifying
metal into the mould is of interest in all kinds of
casting processes. It is important for both the layout
of the casting machines and for the optimization of
product quality and therefore has been investigated
by several authors [1-5].

The heat flux at the metal-mould interface is usually
determined by measuring temperatures within the
mould and/or in the solidifying metal. These data are
then used to solve the so-called inverse heat con-
duction problem. Under conditions close to the steady
state this is often easily achieved by taking two tem-
peratures measured in the mould and the thermal
conductivity of the mould material. For transient
heat-flux conditions the most popular method is to
solve the equation of heat conduction and to fit the
calculated temperatures to those measured by trial
and error variation of the heat-flux density. An alter-
native method is to replace the unknown boundary
condition by a condition derived from the measured
temperatures when the heat conduction equation is
solved using a method of finite differences [6]. By using
such an approach in combination with experimental
data, achieved with the set-up described below, a
strong oscillation of the calculated heat flux was
found. A thorough examination of such effects occur-
ring during solution of inverse heat conduction prob-
lems can be found in the work of Beck [5]. Such
problems can be overcome by using least square
methods [2, 3, 5, 7]. Beck [5] used an expression for
the heat-flux density constant or linear in consecutive
time intervals. The heat-flux densities are determined
one by one for each time interval by an iterative cor-
rection procedure which is derived from the condition
that an appropriate sum of square differences between

measured and calculated temperatures becomes mini-
mal. Beck’s method was also used by Ho and Pehike
[2, 3}. An alternative least square technique only applic-
able to linear problems to determine the whole heat-
flux profile at one time, which has the form of a
polynomial, is described by Frank [7]. A survey of
experimental and theoretical work on metal-mould
heat transfer and also on methods to solve the inverse
heat conduction problem is given by Ho and Pehlke
[3].

With the least square method used in this paper the
whole heat-flux profile, the form of which is adapted
to the specific problem, is determined at one time.
Minimization of the square sum is achieved by a steep-
est descent algorithm [8].

The method is applied to experimental data
achieved with a set-up simulating solidification in
belt casting processes. Such processes are for instance
of great interest in the ficld of near net shape casting of
steel [9, 10]. Heat-transfer conditions for such a type
of caster were investigated by Sugitani ez al. [11] by
measuring the temperatures in the solidifying steel.
Two constant heat-transfer coefficients in two suc-
cessive time intervals were determined by trial and
error to give the best agreement between the measured
and calculated temperatures. The experimental tech-
nique described in the present paper is similar to that
used by Sugitani ez al.

ANALYSIS OF THE EXPERIMENTAL DATA

The following algorithm was used to determine the
heat-flux density from a solidifying metal layer (steel)
into the water-cooled belt based on temperatures
measured in the metal layer,

The temperature profile in both the solid and liquid
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used for the least square method

n number of measuring positions

¢ time

T temperature

T, casting temperature

T liquidus temperature

T, cooling water temperature

Tne temperature measured at the
thermocouple position

h specific enthalpy (as a function of
temperature)

h, specific enthalpy at the previous time
level in the numerical solution
procedure

a, b, ¢ parameters in the formula for «

Gopt> Dopis Com  parameters yielding optimal fit
between measured and calculated
temperatures

¥i, ¥2. ¥y correction factors for ¢, b and ¢

i integer index

NOMENCLATURE
X spatial coordinate Yinew improved values of y,
Xi,....X4 position of the four ! sum of square of differences between
thermocouples measured temperatures and those
m number of temperature measurements calculated using the parameters a, b and ¢

F Fynynys)=flay, by, )

VF  approximate gradient of F

(VF), ith component of VF

Ay increment used in the calculation of VF

s step width in the steepest descent
algorithm

~

F F(s) = F((y1, y1, y2)—5-VF)
[1—d t+d]x[1—d 1+d]x[l —d,14d]
domain in which the minimum of
F is searched,
{Onyny)/1-d<y, < 1+d,

i=1,23}

Ay,... A4 By....,B; coeflicients in the
finite difference equations.

Greek symbols

& heat-transfer coefficient

i thermal conductivity (as a function of
temperature)

P density (as a function of temperature).

parts of the metal layer is given by the equation for

heat conduction
oh ¢ oT
) P 1
Pt = ox (’ wc) M

if a unidirectional heat flux is assumed.

The origin of the coordinate system (x = 0) lies at
the interface between the belt and the metal. The direc-
tion of the x-coordinate is perpendicular to the belt
surface.

Let x,...., x, be the coordinates {distances from
the belt) of the thermocouples. Equation (1) is then
solved in the interval [0, x,] using the following initial
and boundary conditions:

T(x,t=0)=T, @)
T(x =%, 1) = TopelX,. £} (3)

ig(x =00 =a(t,a, b, N(T(x=0,-T,). (4)

For the heat-transfer coefficient o an expression of the
form

alt,a, b)) = at’ +¢ 5

is used.

If for a pure metal T, (x,, 1) is equal to T;, and
both T(x = 0, t) and the material properties are con-
stant, an analytical solution (Neumann’s solution) to
equation (1) can be found. The heat-transfer
coefficient calculated from this analytical solution for

a constant surrounding temperature is in the form of
equation {5) with 5 = —0.5and ¢ = 0. Parameter ¢ is
a function of material data and T(x = 0, 1).
Equations (1)-(5) are solved numerically using
finite differences and a fully implicit enthalpy method
[12]. The specific algorithm used was found to meet
the requirements of accuracy and efficiency in the
computing time and is outlined in the Appendix. To
improve the accuracy for the first period of time the
grid is significantly refined at the lower boundary
(x = 0). For each set of parameters a, b, ¢, a tem-
perature profile is obtained which is compared to the
measured data calculating the square of the differences

medn

flabey= 3, 3 05[(T(x;,t00)

Fe | =1

= Te{Xn tiy u))z -+ (T(x,-, ty— (Tme(x;'-. ) 2]
(tiy 1 —t) =0, (6)

As the temperatures at the highest measuring position
{x = x,) are taken as the boundary condition (equa-
tion (3)) these data are not applied for the calculation
of 1.

To avoid complications arising due to the par-
ameters having different orders of magnitude, their
optimum values are determined using an iterative
steepest descent algorithm which minimizes the func-
tion

F(yyyay) =fla y.brys.coy;) (N
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For a, b and ¢, values are chosen which are expected
to be close to the optimum ones (¢.g. a = 1000 Wm™?
K 's™ ¢=50Wm 2K 'and b= —0.2 for the
considered problem).

As an analytical expression for F cannot be given,
an approximate gradient is calculated starting at
m=ya=yy=1

VF =
F(... yi+Ay, .. )—F( ...y, —Ap,..)
ey Ay AU
ith component (8)

Ay is an increment, e.g. Ay = 2d/100 with d defining
the interval in which the minimum of F is expected
{e.g. d=10.5)

Viaae[l—d, 1+4d]

By looking for this minimum in the direction of steep-
est descent and by assuming that F is also zero there
(which would mean perfect agreement between
measurements and calculations), the following equa-
tion must be solved:

F(s) = F((r1.y2,7:) —sVF) = 0. ©

A first-order Taylor expansion of Fat s = 0 yields

QF(}%;;;;)’.%) (10)
The new point is then calculated according to
l+d if y—s(VF); 2 1+d
Vinew =< 1—d if y—s(VF), <1~d (n
y;—5*(VF), otherwise.
If
F(yir2 ¥ ne) < F(piy2,33) (12

the procedure continues with equation (8) by cal-
culating a new gradient at (), ¥», ¥3)new, Otherwise s
is multiplied by 0.5 and y, ., is calculated again using
this modified value of s and equation (11).

The iteration is continued until F has become
sufficiently small or until no further improvement can
be achieved (for the used values of a, b, ¢ and d). If
(1, ¥2, ¥,) finally lies on the boundary of [1—d,
T4+dix[1—d, 1+d]x [l —d, 1 +d] the iteration has
to be restarted with modified values for a, b, c and 4.

The optimum parameters for the calculation of «
according to equation (5) are finally given by

Qopr = A ),
bop: = b'y:
Copt = €* V3. (13)

The described method was tested by calculating the
temperatures at four different positions using Neu-
mann’s solution and adopting them as ‘measured’ data.
A comparison of the heat-transfer coefficient, deter-
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mined using the method described, with that achieved
from the analytical solution for the temperature pro-
file gave an almost perfect agreement. Of course,
as already mentioned, in this case the analytical ex-
pression for « has exactly the same form as equation

).

EXPERIMENTAL SET-UP

The experimental set-up is sketched in Fig. 1. The
liquid steel is poured into a cylinder standing on the
belt (steel, 1.5 mm thick). The belt is water-cooled
from below.

The cylinder consists of an outer metal cylinder and
an inner one of refractory material (‘insert’ in Fig. 1).
In between there is an insulation layer. The inner
cylinder is preheated before the experiment to prevent
heat losses to the sides and, therefore, to ensure the
mainly axial heat flux assumed in the mathematical
model.

The temperature in the steel is measured by four
thermocouples which are positioned a few millimetres
away from the belt on the centreline of the cylinder.
The thermocouples are inserted into protection tubes
(ALLO,, 1 mm in diameter).

As the protection tubes sometimes break and lift up
somewhat, the small ingots are cut in the longitudinal
direction after completion of the experiment to deter-
mine the actual position of the thermocouples. The
symbols in Fig. 2 show for two examples the tem-
peratures measured at the four positions as a function
of time. The distance between the thermocouple and
the belt is also given for each curve. In the example
given in Fig. 2(a) the thermocouples were practically
in their original position, whereas Fig. 2(b) shows a
significant shift. For the heat-flux analysis described, a
shift in the thermocouple position causes no problem
provided that the final position is known.

As the thermocouples must be heated up from room
temperature, when they come into contact with the
steel it takes about 2 s before stable data are achieved.
The temperature at ¢ = 0 is that measured in the melt.

liquid metal
preheated insert i insylation

metal cylinder

FiG. 1. Sketch of the experimental set-up.
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F1G. 2. Two examples for temperatures measured in the

solidifying steel (symbols). The lines represent temperatures

calculated with the ‘optimal’ parameters in the formula for
the heat-transfer coeflicient.

RESULTS

An analysis of the measured data, given by the
symbols in Fig. 2 leads to the results shown in Fig. 3.
The calculated bottom temperature (x = 0) of the
steel layer, the heat-flux into the belt and the heat-
transfer coefficient, which is calculated from the opti-
mum parameters, are plotted as a function of time.

1600 " v
bottom temperature {x=z0)
1400
o 1
1200
1000 v : r .
4 + r
&
k3
=
o
b}
8
3000 - v
. heat-transfer coefficient
T 11 o=1600 923,445 (Fig.2a)
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FiG. 3. Calculated bottom temperatures, heat-flux densities
and heat-transfer coefficients for the two examples in Fig. 2.
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The heat flux is achieved directly from the bottom
temperature and the heat-transfer coefficient, which
is for a cooling water temperature T,, = 30°C. The
optimum parameters inserted into the formula for o
are also given in Fig. 3(c). Both the heat-flux density
into the belt and the heat-transfer coefficient decrease
strongly at the first moment indicating that the devel-
oping contact resistance between the forming solid
layer and the belt is of great importance. In a series
of experiments in which the belt was made of stainless
steel in place of the non-alloyed steel used in the pre-
sented examples, the relatively low thermal con-
ductivity sometimes leads to a sticking of the small
ingot at the belt. Under such irregular conditions the
good contact results in a significantly increased heat-
transfer coefficient confirming the importance of the
contact resistance.

The temperatures calculated at the measuring pos-
itions in the steel layer using the optimal a-profile
are presented by the lines in Fig. 2 showing good
agreement.

The heat-transfer coefficients are of similar mag-
nitude to those reported by Sugitani ef af. [11]. They
found good agreement between measurements and
calculations, choosing a ~3000 W m~2 K~ for the
initial 2 s and afterwards « = 1200 Wm~* K '. The
heat flux into the belt is also quite similar both in
magnitude and profile to that measured for the broad
sides of moulds for continuous casting of steel slabs
[13]if the distance from the meniscus is converted into
a corresponding time by dividing by the casting speed.

A relatively large scattering was found in the results
for different experiments. This may be due to an
insufficient control during the experiments of the flow
field in the steel after manual pouring and also of
other parameters such as reoxidation. Different types
of structures for the bottom surfaces of the small
ingots were found to develop and their roughness has
a significant effect on heat transfer.

The computing time required to run the written
program in order to achieve the presented examples
is in the range of about 10 min using a modern super
mini computer.

CONCLUSIONS

A technique was tested to determine heat-flux den-
sities from temperatures measured in a solidifying
metal layer. This technique is based on a least square
fit between the measured and calculated data and
was found to be accurate on data derived using an
analytical solution and also insensitive to certain fluc-
tuations of measured data or to a lack of data during
the first seconds. No stability problems found when
testing other methods or reported by other authors
arose. The advantage of the technique presented over
a pure trial and error approach in fitting measured
and calculated data is obvious. Of course, the results
obtained depend to a certain extent on the expression
chosen for the heat-transfer coefficient. There are,
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however, no principal restrictions, such as continuity
or number of parameters involved, on the form of this
expression.

Application of the technique described to the sol-
idification of steel on a water-cooled belt leads to
heat-flux density profiles similar to those measured in
moulds during the continuous casting of steel slabs
indicating that in both processes the mechanisms con-
trolling the heat transfer are similar.
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APPENDIX

Using finite differences and an implicit scheme, dis-
cretization of equation (1) gives a system of equations each
having the form

A OTE=1)+A4,DTO+A (DT 1)+ A,(DHAG) = h, (D

(A1)
where i is the current number of an internal grid point. &,(i)
is the known specific enthalpy at grid point i {or the previous
time level.

To obtain an equation for the variable 4 only, equation
(A1) can be rewritten to give

Bu(Dh(i—1) + Ba(Dh() + Bs(DhG+1) = b () (A2)
with
T(i—1
Bi() = A,() h—((,i;l)) (A3a)
. G «
B,(i) = Az(l')h—g)2 + A,4(i) (A3b)
Buli) = A0t (A3)

RG+1)
The system of equations (A2), which is completed by two
equations for the grid points on the boundary derived from
the boundary conditions, is solved by iteration in the fol-
lowing way. For the first iteration cycle the temperature from
the previous time level is taken to calculate the material data
(4, p) entering 4,,..., A,. The ratio T/h at the grid points
is also taken from the previous time level. This enables B,,
B, and B, to be calculated and the linearized system (A2) to
be solved, yielding new enthalpies / at the grid points. Using
the known A-T relationship new temperatures, material data,
values for the T/h ratio and, therefore, new values for B, B,,
B are achieved. This procedure is repeated until a prescribed
stability for 4 and 7' is reached.

ETUDE PAR UNE METHODE DE MOINDRE CARRE DU TRANSFERT THERMIQUE
ENTRE UN METAL ET L'’EAU DE REFROIDISSEMENT

Résumé-—Une méthode de moindre carré est utilisée pour déterminer le flux thermique partant d’un métal
en solidification (acier) dans une bande refroidie par eau. Pour cela quatre températures mesurées dans le
métal sont comparées 4 celles calculées & partir d’'un modéle mathématique pour résoudre 1'équation de la
conduction thermique. Les conditions aux limites utilisées dans ce modéle sont données par la température
mesurée la plus élevée et par une expression analytique pour le métal et I'eau de refroidissement. Cette
expression contient trois paramétres qui sont déterminés de fagon 4 réduire a Iextréme le carré de la
différence entre la température mesurée et celle calculée. La minimisation est obtenue en utilisant un
algorithme de plus grande pente. Un schéma du montage utilisé par les expériences est donné ainsi que
deux exemples de mesure de température et d’évaluation correspondante de flux thermique.
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UNTERSUCHUNG DES WARMEUBERGANGS ZWISCHEN METALL UND EINEM
WASSERGEKUHLTEN BAND DURCH FEHLERQUADRATMINIMIERUNG

Zusammenfassung—Ein Minimierungsverfahren wird benutzt, um den Wirmestrom zwischen einer erstar-
renden Stahlschicht und einem wassergekiithlten Stahlband zu untersuchen. Hierzu werden vier im Stah!
gemessene Temperaturen mit numerisch berechneten verglichen. Als Randbedingungen werden dabei
die gemessene Temperatur am obersten Thermoelement sowie ein Wirmeiibergangskoeffizient von der
Unterseite der Stahlschicht zum Kithlwasser benutzt. In die Formel fiir diesen gehen drei Parameter
etn, die so bestimmt werden, daB die quadratische Abweichung zwischen berechneten und gemessenen
Temperaturen minimal wird. Fiir die Minimierung wird ein Gradientenverfahren angewandt. Der benutzte
experimentetle Aufbau wird skizziert, und es werden Beispiele fiir durchgefiihrte Auswertungen angegeben.

UCCHENOBAHUE TEIUIOMEPEHOCA MEXY METAJIJIOM U BOJOOXJTAXIAEMbIM
NOSICOM C UCTIONB30BAHHEM METOJA HAUMEHBIINX KBAJIPATOB

Aunoranms—METOXOM HAMMEHBUIMX KBAJAPAaTOB 00pabaTbiBAIOTCH PE3ylbTaThl N0 TEMJIONEPEHOCY OT
3aTBEPAEBAIONIETO META/LNA (CTAIH) K BOAOOXJIAXIAEMOMY CTAJLHOMY Iosicy. C 3Toff Lesbio 4eThipe
IHAYEHHA M3IMEPEHHBIX B METAJUIE TEMIEPaTyphl CPaBHHBAIOTCH ¢ PACCYMTAHHBIME HAa OCHOBE MaTeMa-
THYECKOH MOJENH W3 PCUICHHA YPABHEHMS TENNONPOBORHOCTH. ['paHuuHBic YC/IOBHS, HCTIIOJAb3YEMBIC B
NaHHOH MOJE/H, 3aNACHIBAIOTCA HA OCHOBAHWM MaKCHMaJIbHOH HIMEDEHHON TEMIIEpaTyphl ¥ aHAJIHTH-
YECKOTO BhipaxeHus s koadduupenta TeriooGMeHa OT HEKHeEH 4acTH MeTaula K oxaiiaromeeit
pose. ITomyyeHHoe BBIpAXEHHE BKIIOMAET TPH NAapaMeTpa, ONpefcisieMble MHHMMH3aumel Kpaaparta
PasHOCTH MeX/Y H3MepeHHOH M pacCYHTaHHOH TeMRepaTypaMH. MHHAMM3AIMA AOCTHIAETCH NPH
OMONM aAropHTMa OpicTpelimero cnycka. [IpHBOAATCH cxema IKCHEDHMCHTANBHOH YCTAaHOBKH, a
TAKKE 182 GpUMepa HIMEPEHNUH TEMIEPATYDSH H COOTBETCTBYIOWIHX PACCUHTAHHBIX TEIITOBLIX TOTOKOB.



